Five siblings (one is Julie), were given different colored jumping beans (one set is colored yellow), with each set having a different number of beans (one set has 7). From the clues below can you determine which sibling has which colored jumping bean and how many of each set they have?

CLUES

Jim's set has more than the one with the green-colored beans, but less than that of the red set.
Jane's set of five beans is colored neither blue or yellow.
Julie's set contains more beans than either Jane's or Jeff's (combined).
The orange-colored set either contains 5 or 7 total.
The yellow-colored set (which is not Julie's), contains not less than 9 beans.
Jeff's beans are blue.
There are less beans in Julie's red-colored set than the yellow set.
JUMPING BEANS

Jane-Green-5.
Jasper-Yellow-11.
Jeff-Blue-3.
Jim-Orange-7.
Julie-Red-9.

Step-by-step:

- This first clue "Jim's set has more than the one with the green-colored beans, but less than that of the red set."

Here we are given two immediate eliminations for Jim:
Row Jim - Green, and Red.

Additionally, since Jim "...has more than the green..." and "...less than the red set.", we can make these eliminations (by logical deduction)
Row Jim - 3, and 11.

- By our next clue: "Jane's set of five beans is colored neither blue or yellow."

We start with a solution here Jane - 5, and making the eliminations for:
Row Jane - 3, 7, 9, 11, as well as Column 5 - Jasper, Jim, Jeff and Julie.

Focusing now on the last part of the clue ("...colored neither blue or yellow.")
we can make these eliminations, starting in Row Jane - Blue, Yellow, followed by the same for
Row 5 - Blue, Yellow

- Now our next clue states: "Julie's set contains more beans than either Jane's or Jeff's (combined)."

Which taken the given (Jane = 5), we make note of the available beans (3, 7, 9, or 11) and if we add
5 to each we get (8, 12, 14, and 16) of which, the totals above 12 (including 14 and 16), are just not possible,
therefore the only solution can be that Jane's + Jeff's (beans) =
8, (which is less than both 9 and 11),

therefore we have the solution: **Jeff - 3**, (and since we now know that **Julie has either 9 or 11 beans**),
we can then
eliminate from Row **Julie - 3, 5, and 7**, which allows for further eliminations:

in Row **Jeff - 5, 7, 9, 11** and Column **3 - Jasper**.

• The next clue is: **"The orange-colored set either contains 5 or 7 total."**

Simply eliminate the impossible, namely, find (and remove) from the Column **Orange - 3, 9, 11**.

NOTE An additional elimination can be made because we know Julie can only have **9 or 11 beans**
and the orange set "... either contains 5 or 7 total", it is **not** possible for Julie to have the orange beans, thus eliminate in Row **Julie - Orange**,

and after applying this same principle for Jeff (who has **"exactly 3 beans"**),
we have the elimination in Row **Jeff - Orange**.

• The next clue reads: **"The yellow-colored set (which is not Julie's), contains not less than 9 beans."**

Let's start with the obvious elimination in Row **Julie - Yellow**, and then for Column **Yellow - 3, 5 and 7**.

• The next to last clue states: **"Jeff's beans are blue."**

This is a solution clue, **Jeff - Blue**, which (since we know **Jeff has 3 beans**) means the following **must** also be the solution: **3 - Blue**, from which we make some further eliminations:
Row **Jeff - Green, Red, and Yellow**, as well as
Row **Blue - Jasper, Jim, Julie, 5, 7, 9, and 11**, and
Row **3 - Green, and Red**.
The last clue reveals: "There are less beans in Julie's red-colored set than the yellow set."

Begin with the solution **Julie - Red**, then make eliminations in Column **Red - Jasper, Jim, 5, and 7**. as well as (back to) Row **Julie - Green**.

Lastly we are given: ("... less beans in Julie's...than the yellow set") , which can only lead to a valid solution (or two) **Julie - 9, Red - 9** and **Yellow - 11**,

(From which we make our eliminations as follows) : Row **Julie - 11,**, and Row **11 - Green**, then from Column **Red - 11**, then from Row **9 - Green, Yellow**

from Column **9 - Jasper and Jim**, which reveals this solution **Jasper - 11**, which means: **Jim must be 7**, so fill in solution **Jim - 7**, and make the eliminations:

Row **Jim - Yellow**, leads to the solution **Jim - Orange**, from which this solution directly follows: **7 - Orange**, which triggers eliminations: first, in Column **Orange - Jane and Jasper**, followed by Row **5 - Orange**, (which provides the solution) **5 - Green**, from which the solution: **Jane - Green** logically follows.