Last week Mr. Wilkes gave his math class two quizzes, the kids (one of whom was named Amber) each took the quizzes on separate days and nobody received lower than a 60 score. From the clues provided below can you determine what scores the kids received on each quiz?

CLUES:

No child received the same score on both quizzes.
The girl who received a perfect score on the first quiz, wound up with an average of 95 from both quizzes.
Marc had the lowest overall average of 75 (he received a score of 60 on one of the quizzes).
Amber scored higher on her second quiz.
On the second quiz Marie improved her score by more than 20 points.
Matt's second score was 10 points lower than his first quiz score.

<table>
<thead>
<tr>
<th>TEST SCORES</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>90</th>
<th>100</th>
<th>60</th>
<th>75</th>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amber</td>
<td></td>
</tr>
<tr>
<td>Marc</td>
<td></td>
</tr>
<tr>
<td>Marie</td>
<td></td>
</tr>
<tr>
<td>Matt</td>
<td></td>
</tr>
<tr>
<td>Stacy</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>
This first clue: "No child received the same score on both quizzes."

We are already given the two sets of scores, so the eliminations are as follows:

for the following Rows 75 - 75, 85 - 85, and 90 - 90.

Our next clue is: "The girl who received a perfect score on the first quiz, wound up with an average of 95 from both quizzes."

Taking the first part of our clue, we eliminate (all the boys) from the Column 100 - Marc, Matt.

The last part of the clue requires a bit of math, because we know the first score was 100, we are then told the Average after the second quiz is 95, and using the formula for average = (Quiz 1 + Quiz 2)/2 = 95, which can be re-written as Quiz 1 + Quiz 2 = 95 x 2, and since we know Quiz 1 = 100, by substitution we have, 100 + Quiz 2 = 190, (or solving for Quiz 2), Quiz 2 = 190 - 100 = 90. Therefore our first solution is 100 - 90.

We can now eliminate first in Column 100 - 60, 75, 85, 95. While in Row 90 - 65, 75, 85 and in Column 90 - Marc, and Matt.

Our next clue is: "Marc had the lowest overall average of 75(he received a score of 60 on one of the quizzes)."

Lets take the second part of the clue and fill-in the solution Marc - 60, from which we can make the elimination in
Row **Marc - 75, 85, 95 (for the second set of quizzes)**, and then the eliminations in Column **60 - Amber, Marie, Matt, and Stacy**.

We are now prepared to find Marc's first score based on the **75 average**, using the formula
average = (Quiz 1 + Quiz 2)/2 , (and making the appropriate substitutions for average = 75, and Quiz 2 = 60), and solving for
Quiz 1 = 150 - 60 = 90, so we have a solution for Marc's set of scores : **90 - 60**, leading to the following eliminations :

Row **Marc - 65, 75, 85**, and in Column **90 - Amber, Marie, Matt , Stacy, 75, 85, 95**, then Row **60 - 65, 75, 85**.

- **Our next clue states "Amber scored higher on her second quiz."**

 We can make the elimination from the Row **Amber - 100**.

- **Our next clue states "On the second quiz Marie improved her score by more than 20 points."**

 We must first look at the available Quiz scores for Marie, first from **Quiz 1 : 65, 75, 85, 100** and **Quiz 2 : 75, 85, 90, 95** ,

 The only possible scores she could have received are on Quiz 1 **65**, and on Quiz 2 a **95**(which is 'more than 20 points' higher than Quiz 1).

 Therefore, we have the solutions : **Marie - 65** and **Marie - 95**, (from which we make the following eliminations) in Row **Marie - 75, 85, 100** (from Quiz 1) , and **Marie - 75, 85, 90**(from Quiz 2).

 (From which we derive more eliminations) in Column **65 - Amber, Matt, Stacy, 75, 85** and Row **95 - 75, 85**, and returning to Column **95 - Amber, Matt, Stacy**.

Which leads to the following solutions: **75 - 85** and **85-75**.
Our last clue is "**Matt's second score was 10 points lower than his first quiz score.**"

Quiz 1 : 65, 75, 85, and **Quiz 2 : 75, 85, 95,**

which means the only logical combination would be **85-75,**

so filling-in these solutions **Matt - 85 (Quiz 1)** and **Matt - 75 (Quiz 2),**

results in the following eliminations : first, for Row **Matt - 65, 75 (Quiz set 1),** and **Matt - 85, 95 (Quiz set 2),**

then for Columns **85 - Amber, Stacy** and **75 - Amber** and forRow **75 - 65.**

Congratulations! Puzzle solved. To summarize:
Amber-75-85.
Marc-90-60.
Marie-65-95.
Matt-85-75.
Stacy-100-90.